MATLAB.Exponenta
MATLAB и Simulink на русском
Технологии разработки и отладки
		сложных технических систем

MATLAB\MATLAB

В.Г.Потемкин "Справочник по MATLAB"
Работа с разреженными матрицами

  В оглавление книги \ К следующему разделу \ К предыдущему разделу

Алгоритмы упорядочения

DMPERM
DM-декомпозиция разреженной матрицы

Синтаксис:

            p = dmperm(S)
            [p, q, r] = dmperm(S)
            [p, q, r, s] = dmperm(S)

Описание:

Функция p = dmperm(S) возвращает вектор максимального соответствия; если исходная матрица S имеет полный столбцовый ранг, то матрица S(p, :) - является квадратной с ненулевой диагональю. Матрица S(p, :) называется декомпозицией Далмейджа - Мендельсона (Dulmage - Mendelsohn) или DM-декомпозицией.

Если S - приводимая матрица, то есть линейная система Sx = b может быть решена приведением S к верхней блочной треугольной форме, то такое решение может быть найдено методом обратной подстановки.

Функция [p, q, r] = dmperm(S) определяет такую перестановку строк p и такую перестановку столбцов q для квадратной матрицы S, что S(p, q) - матрица в верхней треугольной форме. Третий выходной аргумент r - это целочисленный вектор, который описывает границы блоков, так что блок k матрицы S(p, q) имеет следующие границы r(k) : r(k + 1) - 1.

Функция [p, q, r, s] = dmperm(S) определяет такую перестановку строк p и такую перестановку столбцов q для прямоугольной матрицы S, что S(p, q) - есть матрица в верхней треугольной форме. Границы k-го блока определяются параметрами r и s согласно соотношению (r(k) : r(k + 1) -1, s(k) : s(k + 1) -1).

В терминах теории графов диагональные блоки соответствуют компонентам Холла смежного графа матрицы A.

Сопутствующие функции: SPRANK.

  В оглавление книги \ К следующему разделу \ К предыдущему разделу

 


Поиск по сайту:

Система Orphus

Яндекс.Метрика