MATLAB.Exponenta
MATLAB и Simulink на русском
Технологии разработки и отладки
		сложных технических систем

Обработка сигналов и изображений\ Image Processing Toolbox

И.М.Журавель "Краткий курс теории обработки изображений"

В оглавление книги \ К предыдущему разделу \ К следующему разделу

Анализ некоторых характеристик локальных окрестностей

Аналитическим выражением, описывающим количественное определение реакции зрительной системы на световое возбуждение, является его контраст. Вид этого выражения определяется свойствами конкретной зрительной системы восприятия [1, 2]. То есть изменение выражения определения контраста отвечает изменению типа зрительной системы или ее параметров. Это создает возможности адаптации зрительной системы путем изменения выражения для определения локального контраста. Разумеется, что при этом аналитическое выражение должно обеспечивать сохранение основных предельных свойств. Эти свойства заключаются в том, что локальный контраст приобретает максимальное значение только тогда, когда его компоненты имеют значения, которые лежат на противоположных краях диапазона, и равный нулю - в случае равенства этих компонентов по величине. Критерием оценки выражений контраста является эффективность их применения при цифровой обработке изображений. Следовательно, удачный выбор того или иного выражения определения контраста существенно влияет на дальнейшее применение метода.

Вторым важным фактором эффективного применения адаптивных методов является правильный выбор функции адаптивного преобразования локальных контрастов. В данной работе рассматриваются только степенные функции преобразования типа . Далее будем более детально рассматривать только степень преобразования локальных контрастов . При формировании таких функций задают минимальное () и максимальное () значения степени , причем , . А сама адаптация состоит в формировании дополнительного слагаемого к на основе некоторой локальной статистики (энтропия, функция протяженности гистограммы, среднеквадратическое отклонение). Функции преобразования должны удовлетворять условиям:

, , .

Отметим, что выбор той или иной функции преобразования зависит от того, какая статистика используется для характеристики гладкости локальной окрестности .

Рассмотрим несколько окрестностей, которым присуща различная степень гладкости: а) локальная окрестность с одинаковыми уровнями яркостей (однородная окрестность); б) локальная окрестность, элементы которой имеют значения яркостей, находящиеся на противоположных концах диапазона (условно бинарная окрестность); в) локальная окрестность, которая содержит элементы, значения яркостей которых не являются одинаковыми и не находятся на краях диапазона.

Приведенные выше типы окрестностей будут характеризоваться различными значениями локальных характеристик. Рассмотрим это более детально на примере энтропии, функции протяженности гистограммы и среднеквадратичного отклонения. Для определения энтропии в скользящей локальной окрестности размерами используется выражение:

(1)

где - вычисляется за выражением

,

- значение гистограммы локальной окрестности (количество элементов с яркостью в окрестности ) для величины яркости элемента с координатами .

Согласно выражению (1), энтропия приобретает максимальное значение на однородных участках, а минимальное - на участках с элементами, значения яркостей которых находятся на противоположных краях диапазона.

Второй статистикой, используемой для характеристик локальных окрестностей, является функция протяженности гистограммы, которая вычисляется по выражению:

, (2)

где , - минимальное и максимальное значения яркости в скользящей окрестности с центром в элементе с координатами ;

- максимальное значение гистограммы скользящей локальной окрестности с центром в элементе с координатами .

Эта характеристика локальной окрестности приобретает минимальные значения на однородных участках, и максимальные - на бинарных участках.

Следующей характеристикой гладкости локальных окрестностей является среднеквадратическое отклонение значений яркостей элементов скользящей окрестности , которое вычисляется за выражением:

, (3)

где - среднеарифметическое значение яркостей элементов локальной окрестности с центром в элементе с координатами .

Выражение (3) равно нулю для однородных окрестностей и возрастает с увеличением неоднородности. Более наглядно характер изменения значений локальных характеристик в зависимости от типа окрестности демонстрирует рис. 1.

Теперь, когда известен характер изменения значений локальных статистик в скользящих окрестностях различного типа, рассмотрим процедуру формирования функции преобразования локальных контрастов. Важная проблема, которая стоит перед исследователем при формировании этой функции, заключается в том, насколько нужно увеличить локальные контрасты на том или ином участке изображения. Характер изменения усиления определяется локальными статистиками, но границы изменения ( ) задаются исследователем. Это связано с тем, что пока не существует теоретического решения

Рис. 1. Схематическое отображение изменения значений локальных характеристик в зависимости от типа скользящей окрестности (стрелками указано направление возрастания значения локальной статистики для различных типов скользящих окрестностей).

проблемы оптимальности преобразования локального контраста. Поэтому, исходя из опыта и знаний исследователя, функцию преобразования формируют таким образом, чтобы она обеспечивала максимальную контрастность изображения при минимуме искажений, вызванных чрезмерным усилением локальных контрастов.

Отметим, что вид функции преобразования в первую очередь зависит от конкретной задачи обработки изображения. Иными словами, формируя данную функцию, существует возможность регулировать степень преобразования локальных контрастов на различных типах окрестностей. При этом придерживаются следующих утверждений:

  • на однородных окрестностях должна приобретать максимальное значение, что приведет к минимальному усилению локальных контрастов, поскольку в обратном случае это может привести к усилению шумовой составляющей сигнала. Исключение составляют только те однородные участки, которые являются потенциально информативными;
  • на локальных окрестностях, которые характеризуются высокой контрастностью, должно также принимать максимальное значение, что обеспечивает минимальное усиление локального контраста. Чрезмерное усиление высококонтрастных участков может привести к их искажениям;
  • на остальных окрестностях должно обеспечивать близкое к максимальному усиление контраста, поэтому должно принимать минимальное значение.

Следует отметить, что должно описываться относительно простыми выражениями, поскольку это влияет на вычислительную сложность метода.

С учетом приведенных выше утверждений в роботе предложено несколько выражений для выбора показателя степени в степенном преобразовании локальных контрастов (табл. 1).

Таблица 1.


п/п

Степень преобразования локальных контрастов , где - некоторая локальная статистика.

Типичные виды зависимостей

1

где .

2

,

где .

3

где .

4

,

где - среднее значение яркостей элементов изображения;

; - константа.

Выбор того или иного выражения обусловлен задачей корректировки реакции восприятия света конкретным пользователем [2].

Таким образом, когда известны значения локальных контрастов потенциально информативных участков, тогда, употребляя описанный выше подход, можно повышать контрастность указанных участков более эффективно.

Следовательно, предложенные принципы построения степенных функций преобразования обеспечивают широкие возможности относительно создания эффективных методов усиления локальных контрастов. При построении функций существует возможность учитывать особенности конкретных изображений, их информативных участков, что предоставляет дополнительные преимущества методам адаптивного преобразования локальных контрастов.

Литература

  1. Dash L., Chatterji B.N. Adaptive contrast enhancement and de-enhancement // Pattern Recognition, 1992. - V. 24, № 4. - P.289 - 302.
  2. Воробель Р.А. Цифровая обработка изображений на основе теории контрастности: Дис… докт. техн. наук: 05.13.06. - Львов, 1999. - 369 с.

В оглавление книги \ К предыдущему разделу \ К следующему разделу


Поиск по сайту:

Система Orphus

Яндекс.Метрика