MATLAB.Exponenta
MATLAB и Simulink на русском
Технологии разработки и отладки
		сложных технических систем

Обработка сигналов и изображений\ Image Processing Toolbox

И.М.Журавель "Краткий курс теории обработки изображений"

В оглавление книги \ К следующему разделу \ К предыдущему разделу

Расширение границ изображений. Сверхразрешение.

В функции распространения точки могут учитываться линейный смаз, расфокусировка и другие виды искажений.При сильном искажении отношение размеров кадров и может быть весьма малым.

Влияние, оказываемое усечением изображения , можно уменьшать более сложным, чем аподизация, методом экстраполяции с области на кадр . Очевидно, что нечего и пытаться восстанавливать изображение вне области . Единственная цель данного вида предварительной обработки состоит в замене усеченного изображения изображением, которое:

а) свободно от скачкообразных изменений вблизи своей границы;

б) имеет правильный размер, соответствующий восстанавливаемой части истинного изображения (т. е. существует на кадре );

в) содержит всю записанную информацию.

Такой вид предварительной обработки будем называть расширением границ. Эта процедура описывается соотношением

при .

Существуют два способа расширения границ. Простое расширение границ состоит в том, что функцию продолжают с области Г на внешнюю границу кадра вдоль прямых линий, перпендикулярных этой границе . Такая процедура, конечно, выполняется просто, когда области и прямоугольные (что соответствует большей части практических приложений).

Хотя простое расширение границ приводит к менее удовлетворительным результатам в центральной области восстановленного изображения, чем аподизация, оно всегда позволяет извлечь больший объем информации, содержащийся в истинном изображении. Такая процедура эффективна также как метод компенсации усечения изображения . Однако на нее оказывает отрицательное влияние несогласованность операции деконволюции.

В методе расширения границ с перекрыванием несогласованность свертки устраняется тем, что предварительно обработанное изображение считается периодическим. Плоскость изображения следует рассматривать как состоящую из смежных кадров , равных кадру . Будем называть эти кадры основными ячейками. Внутренняя ячейка, представляющая собой кадр, конгруэнтный области , центрирована с каждой основной ячейкой. Под границей ячейки понимается граница между основной и соответствующей внутренней ячейкой. Под предварительно обработанным записанным изображением по-прежнему будем понимать изображение, задаваемое определением

при ,

при .

Таким образом, область следует рассматривать как бесконечно повторяющуюся в плоскости изображения, так что в каждой основной ячейке будет находиться копия изображения . Каждую копию области назовем исходной ячейкой. Поскольку область больше области , изображения на каждой исходной ячейке переходят и в соседние основные ячейки. Эффект перекрывания имеет место только в пределах границ ячеек. Следовательно, изображение совпадает с изображением на каждой внутренней ячейке, но отличается тем, что оно соответствующим образом скорректировано в пределах границы каждой ячейки. Конечно, такая коррекция должна обеспечить периодичность изображения в том смысле, что его функциональное поведение повторяется в окрестностях противоположных точек (которые определяются далее). Значение интенсивности изображения в произвольной точке на внешней границе основной ячейки должно быть зеркальным повторением значения интенсивности изображения в противоположной точке, которая определяется следующим образом. Если ось проходит через основную ячейку, то двумя противоположными точками называются точки пересечения оси с внешней границей основной ячейки.

Отметим, что изображением , полученным в результате расширения границ с перекрыванием в пределах каждой основной ячейки, аппроксимируется периодически продолженное идеальное искаженное изображение. Практически успешность процедуры расширения границ сильно зависит от выполнения следующего требования "гладкости". Изображение в пределах границы произвольной ячейки должно быть по крайней мере столь же гладким, как и изображение в пределах любой внутренней ячейки. Оценку выполнения этого требования вполне допустимо осуществлять визуально. Данным требованием предотвращается появление в изображении ложных составляющих с высокими пространственными частотами, благодаря чему повышается общая устойчивость процесса восстановления изображений. Еще одно преимущество процедуры расширения границ с перекрыванием перед процедурой простого расширения состоит в том, что покрывается менее половины области и допускается меньше произвола. Эта процедура требует минимума экстраполяции для заполнения границы каждой ячейки и поэтому оказывается, вообще говоря, более точной. Если вспомнить основную задачу деконволюции, то методы простого расширения границ и расширения с перекрыванием можно рассматривать как средства сведения практической задачи деконволюции к задачам, соответственно, идеализированной конечной и периодической деконволюции, но с минимизацией вредного влияния искажений, которые неизбежно зашумляют записанные изображения. Очевидно, что процедуру расширения границ с перекрыванием можно реализовать столь же непосредственно, как и простое расширение границ, но практически она часто дает гораздо лучшие результат ы. Тем не менее процедура простого расширения границ тоже нередко применяется, особенно в тех случаях, когда метод с перекрыванием по какой-либо технической причине нельзя использовать.

Потери разрешения в процессе записи, связанные с недостатками устройства, формирующего изображение (например, с аберрациями, которые препятствуют достижению дифракционного предела), можно рассматривать как вклад в полный шум, поскольку они приводят к ухудшению восстановленного изображения, которого можно было бы избежать. Поэтому целесообразно предусматривать процедуру сверхразрешения на этапе предварительной обработки, поскольку эта процедура позволяет иногда воспользоваться преимуществом дуальности частотной плоскости и плоскости изображения для восстановления части потери разрешения без операции деконволюции (последнюю, конечно, можно выполнить позднее, чтобы попытаться в еще большей степени уменьшить потерю разрешения). Отметим в связи с этим также и очень важный психологический фактор. Люди неохотно терпят какие-либо ограничения. Поэтому так естественно попытаться превзойти дифракционный предел!

Предположим, что некоторый спектр записывается на интервале длиной прямой линии с центром в начале частотной плоскости. Из теоремы о проекции следует, что результат преобразования Фурье наблюдаемого спектра представляет собой проекцию с разрешением по пространственной частоте, равным . Очевидно, что данная проекция может иметь сверхразрешение, если известно, как расширить спектр за границы интервала длиной . Поскольку истинное изображение реконструируется по его проекциям, ясно, что нужно достичь сверхразрешения данных и в двумерном случае, если то возможно в одномерном случае.

Для этого необходимо рассмотреть одномерное изображение конечной протяженности и его фурье-образ .

Если - функция конечной протяженности, то - целая функция, а значит, спектр аналитически продолжается на всю частотную плоскость при условии, что функция точно известна в конечном диапазоне значений . Но именно последнее условие часто приводит к неприятностям. Все виды "шума", которые неизбежно искажают результаты измерений, обычно столь сильно ограничивают диапазон "продолжения" пространственных частот, что указанная выше возможность редко оказывается реализуемой практически. Некоторое улучшение может быть достигнуто, если разложить функцию на сферические гармоники и воспользоваться их свойством одновременной ортогональности в конечном и бесконечном диапазонах, но зашумленность снова, как правило, снижает эффективность такой процедуры. Основная причина того, почему изложенный выше подход к сверхразрешению редко оказывается успешным (даже если исходное разрешение сравнительно низкое), состоит в том, что при таком подходе не учитывается условие вещественности и неотрицательности значений изображения. К сожалению, не ясно, как включить эти ограничения в описанную методику аналитического продолжения. Необходимы другие подходы, описанные ниже.

Много говорилось о возможностях в отношении сверхразрешения, предоставляемых методом мак симальной энтропии, который наиболее удобно рассматривать с использованием ДПФ. Мы рассмотрим только одномерный случай. Определим энтропию следующим образом:

. (1)

Неотрицательная вещественная константа обычно полагается равной нулю или единице. Но, по-видимому, нет особых оснований для такого ограничения, если исходить из термодинамических аналогий. Единственный критерий приемлемости метода обработки изображений - это качество получаемых результатов, а потому можно испробовать и другие значения константы . Рассматриваемый метод заключается в продолжении функции , обеспечивающем максимум энтропии . Вся суть этого метода, возможно, в том, что логарифмы в определении (1) исключают получение отрицательных значений для изображения с вещественными значениями. Данный метод частот приводит к впечатляющим результатам, но они очень сильно за висят от некоторых деталей истинного изображения, например спектр может резко измениться, если к изображению добавить небольшой фон. В настоящее время метод максимальной энтропии изучен недостаточно, чтобы о нем можно было судить вполне объективно. Однако это один из немногих методов, при которых в сверхразрешенном изображении автоматически учитывается требование неотрицательности.

Более совершенный метод сверхразрешения - алгоритм Герхберга. Этот алгоритм является устойчивым в большом числе случаев, хотя, конечно, уровень зашумленности ограничивает достижимую степень сверхразрешения. Кроме того, данный алгоритм является гибким и удобным для эффективной реализации в двумерном случае. Несколько близких алгоритмов вытекают из следующего обобщения алгоритма Герхберга.

Пусть и - верхняя и нижняя границы величины , и - соответствующие границы величины

; (2)
. (3)

Предположим, что существует такая функция , для которой неравенства (2) и (3) действительно выполняются. Для этого, конечно, нужно лишь, чтобы ограничения были не слишком жесткими. Практика показывает, что при итерационном применении условий (2) и (3) начальная оценка для функции сходится к некоторой функции, скажем , удовлетворяющей условиям (2) и (3). Кроме того, величина уменьшается при сужении указанных ограничений, если это производится постепенно в ходе выполнения итераций. На начальных итерациях важно предусмотреть "запас" при выборе нижних границ для изображения и его спектра. Слишком жесткие границы, при которых функция не удовлетворяет условиям (2) и (3), приводят к ложным результатам.

Изложенное выше освещает одну важную сторону преобразования Фурье. Как мы знаем, существует соотношение дуальности между частотной плоскостью и плоскостью изображения,т. е., зная функцию , мы можем найти ее спектр , и наоборот. Формулы (2) и (3) говорят о том, что существует еще и соотношение дуальности для точности, с которой производится восстановление функции и ее спектра . По заданным функциям и можно рассчитать правильные границы спектра , и наоборот. Еще важнее то, что, зная функции в ограниченной области плоскости изображения и соответствующие спектры и в ограниченной области частотной плоскости, можно получить согласованную оценку на плоскости изображения. Кроме того, можно экстраполировать найденные границы в двух данных плоскостях, причем промежутки между верхними и нижними границами, конечно, расширяются с увеличением степени экстраполяции.

Итак, мы имеем возможность при экстраполяции изображений налагать на изображения не только требование неотрицательности значений изображения, но и его границы. Конкретная априорная информация относительно функции может быть использована непосредственно при расчете функций и . Алгоритмы сверхразрешения оказываются наиболее эффективными в том случае, когда различия между функциями и минимальны.

Поэтому желательно, чтобы имеющаяся априорная информация об изображении в кадре , относилась к возможно большей части кадра и даже выходила за его пределы. Интересным примером к сказанному могут служить изображения гористых поверхностей планет и их спутников, освещаемых Солнцем под малым углом, полученные с космических кораблей. Такие изображения почти не зависят от атмосферных эффектов и содержат обширные области глубокой тени. Если сделать вполне допустимое априорное предположение о том, что теневые области черные и имеют резкие границы, то мы получим основу для ограничений в алгоритмах сверхразрешения. Записанное изображение соответствующим образом калибруется и сглаживается, а затем интерполируется для увеличения числа отсчетов (например, в 4 раза в каждом направлении). Производится идентификация теневых областей, после чего применяется алгоритм сверхразрешения. В одномерных реализациях этого подхода нам удавалось в 3 раза повысить разрешение полных изображений.

Заметим, что разность функций и можно разбить на две части:

, (4)

где и - корректируемая и некорректируемая составляю щие шума, определяемые следующим образом: удовлетворяет ограничениям (это означает, что данная составляющая не меняется при выполнении алгоритма), а < не удовлетворяет ограничениям (откуда следует, что эта составляющая постепенно уменьшается по амплитуде в ходе итерационного процесса). Термин "шум" мы используем здесь в несколько другом смысле, чем раньше, но это не оказывает какого-либо влияния на ход наших рассуждений. Заметим, что алгоритм сверхразрешения может быть эффективным, только если функции и не флуктуируют в противофазе друг с другом и если величина в общем превышает величину . На практике эти условия часто выполняются.

Любая априорная информация, которая может быть включена в алгоритм экстраполяции, полезна. Хорошим примером применения нашей процедуры может служить случай подчеркивания деталей изображения. Само собой разумеющееся предположение о том, что деталь имеет некоторую форму,- очень ценная априорная информация. Она позволяет ввести кадр определенной формы, размеры которого несколько больше размеров детали и за пределами которого функция равна нулю. Это пример простого, но сильного ограничения, при котором алго ритмы сверхразрешения оказываются очень эффективными.

Литература.

1. Бейтс Р., Мак-Доннелл М. Восстановление и реконструкция изображений: Пер. с англ.- М.: Мир, 1989. - 336.

2. Bracewell R.N. The Fourier Transform and its Applications. - N.Y.: McGraw-Hill, 1978.

В оглавление книги \ К следующему разделу \ К предыдущему разделу


Поиск по сайту:

Система Orphus

Яндекс.Метрика