MATLAB.Exponenta
MATLAB и Simulink на русском
Технологии разработки и отладки
		сложных технических систем

Обработка сигналов и изображений\ Image Processing Toolbox

И.М.Журавель "Краткий курс теории обработки изображений"

 В оглавление книги \ К следующему разделу \ К предыдущему разделу

Предварительная обработка изображений

Успешность восстановления изображений сильно зависит от качества предварительной обработки, в результате которой из записанного изображения получают изображение a(x) . Мы разделяем предварительную обработку на пять категорий: сглаживание, разбиение на фрагменты, аподизацию, расширение границ и сверхразрешение [1].

Обычно для более полного уменьшения эффектов зашумления проводят сглаживание изображения . Хотя эта процедура часто носит главным образом косметический характер, она может иметь и более важное практическое значение. Напомним, что величина c(x) (см. "Деконволюция", формула (9)) учитывает эффекты, связанные с нелинейностями записи, шумом записи изображения, ошибками в передаче битов, отсутствием некоторой информации (т. е. отсутствием отдельных элементов изображений или целых групп их), насыщением, а также с загрязнением и царапинами, которые искажают фотографии. Сглаживание можно рассматривать как двумерный аналог простейшей обработки сигналов, имеющей целью исключить весь шум, спектральные составляющие которого лежат вне полосы временных частот, соответствующей сигналу, передаваемому рассматриваемым каналом связи. Большинство видов помех, перечисленных выше, можно считать помехами с независимыми отсчетами, тогда как характерные детали изображений обычно коррелированны в пределах нескольких соседних элементов изображения. Иначе говоря, спектр пространственных частот шума существенно шире, чем спектр изображения, и в этом случае весьма эффективна пространственная фильтрация изображения , оставляющая только те спектральные составляющие шума c(x) , которые разрешены в той же степени, что и деталь в истинном изображении.

Опыт показывает, что точность восстановленного изображения в значительно большей степени определяется уровнем зашумленности, остающимся в изображении после предварительной обработки, нежели фактически используемым методом деконволюции.

Методы деконволюции прямо применимы только в случае пространственно-инвариантной функции распространения точки (ФРТ).

Нарушение условия пространственной инвариантности меняет характер задачи деконволюции, существенно увеличивая вычислительную сложность и стоимость расчетов даже при использовании методов, пригодных в случае пространственно-зависимых ФРТ. Во многих практических ситуациях такое нарушение связано по большей части не с какими-либо факторами принципиального значения, а с геометрическими искажениями, вносимыми в процессе записи (такие искажения часто вызываются, например, линзами в устройствах, формирующих изображение). Поэтому мы будем рассматривать коррекцию геометрических искажений одновременно со сглаживанием. Для компенсации геометрических искажений, приводящей к практически пространственно-инвариантной ФРТ, можно использовать методы коррекции геометрических искажений. Приведем пример. Предположим, что некоторая сцена фотографируется с вращающегося летательного аппарата, в котором камера жестко закреплена. Плоскость, в которой лежит фотопленка камеры, будет плоскостью изображения. Зная геометрические соотношения между рассматриваемой сценой и летательным аппаратом, мы можем рассчитать положение осевой точки (точки пересечения оси вращения с плоскостью изображения). Даже если камера хорошо сфокусирована, записанное изображение искажается пространственно-зависимой ФРТ, которая в каждой точке изображения с вращательным смазом представляется дугой окружности с центром в данной осевой точке. Угловая протяженность этой дуги пропорциональна произведению времени экспозиции на скорость вращения летательного аппарата. Соответствующая процедура коррекции геометрических искажений должна приводить к преобразованию каждой дуги в отрезок прямой линии постоянной длины. Тогда преобразованная ФРТ становится пространственно-инвариантной, соответствующей линейному смазу. После компенсации смаза с помощью какого-либо наиболее подходящего метода деконволюции исходная геометрия восстанавливается в результате соответствующей коррекции.

В случае пространственно-зависимых ФРТ, не допускающих эффективного применения процедуры коррекции геометрических искажений, существуют два подхода. Можно использовать один из прямых методов. Однако компьютерная реализация этих методов настолько сложна, что они имеют практическую ценность только при обработке изображений небольших размеров (скажем, 128х128 элементов), а также в том случае, когда ФРТ изменяется лишь по одной координате. Второй, обычно более предпочтительный, подход - разбиение записанного изображения на ряд смежных фрагментов одинакового размера. Принимается, что искажение каждого фрагмента связано с формой реальной ФРТ в его центре. Все нарушения этого предположения включаются в полную зашумленность фрагмента изображения, размер которого должен быть настолько мал, чтобы не допустить избыточной зашумленности. В то же время, как показывает наш опыт, размер фрагмента изображения должен быть по крайней мере в четыре - восемь раз больше эффективного размера ФРТ. При всем этом предполагается, что реальная ФРТ изменяется на записанном изображении плавно и медленно (это условие часто выполняется на практике). Таким образом, разбиение на фрагменты дает возможность свести задачу восстановления изображения, описываемого пространственно-зависимой ФРТ, к последовательности практических задач деконволюции. Полное восстановленное изображение получается путем составления мозаики из отдельных восстановленных фрагментов.

Обозначим область плоскости изображения, занимаемую заданным (но сглаженным, как описано выше) записанным изображением, через . Это согласуется с определениями, которые связывают записываемое и фактически записанное изображения r(x) и . Однако записываемое изображение r(x) в большей части практических приложений фактически усекается до вида , чем и объясняется, почему эти два изображения, вообще говоря, различны. Напомним, что - зашумленный вариант изображения b(x) . Последнее является фактически интересующим нас изображением, поскольку к нему мы хотели бы применить операцию деконволюции. Поскольку изображение b(x) выходит за пределы вышеуказанного кадра, логично предположить, что то же самое имеет место и для изображения . Заметим, что изображение может все же отличаться от изображения r(x) . Поэтому для этого кадра мы введем другой символ Г . Имеет смысл пытаться восстанавливать только те части изображения f(x) , которые оказывают влияние на вид изображения b(x) в пределах кадра Г . Это части изображения f(x) , которые в исходном состоянии находятся в кадре Г , а также части этого изображения, которые вносятся в результате действия ФРГ в пределы кадра Г извне его. Обозначим через кадр, содержащий сумму этих частей. Кадр может быть построен путем размещения центра кадра ФРТ на внешней границе кадра Г и перемещения ее по этой границе (см. "Деконволюция", формула (1)). Тогда кадр и будет представлять объединение всех точек в кадре Г и всех точек, охватываемых кадром при его прохождении по области Г .

Поскольку части истинного изображения, лежащие вне кадра , полностью теряются, можно предположить, что изображение f(x) лежит в пределах кадра . Поэтому далее будем считать, что

(1)

откуда, естественно, следует равенство

(2)

Так как изображение f(x) существует на кадре , из-за "размывающего" действия ФРТ h(x) оно должно сказываться в пределах большего кадра. Этот больший кадр содержит все части изображения b(x) , которые теряются при усечении изображения r(x) , а потому мы обозначим его через . Поскольку же есть зашумленный вариант изображения b(x) , область идентична области .

Хотя мы знаем о существовании изображения в пределах кадра , оно задается только на кадре Г . Обычно целесообразно провести дальнейшую обработку (кроме сглаживания) для более полной компенсации эффектов усечения, а также несогласованности операции свертки. Итак, нужно, чтобы предварительно обработанное записанное изображение (см. "Деконволюция", формула (9)) удовлетворяло условию

(3)

где через pre{} обозначены операции, описываемые ниже

Усечение изображения имеет столь важное значение с практической точки зрения, что нужно остановиться на его последствиях. Сначала конкретизируем форму кадра Г . Мы будем рассматривать только прямоугольные и круговые кадры, поскольку они чаще встречаются в приложениях. Таким образом, если L1 и L2 есть x и y -протяженности прямоугольного кадра г или если R - радиус кругового кадра Г , следует, что

(4)

или

(5)

где за начало координат взят центр кадра Г . Эти два варианта изображения удобно исследовать раздельно. Из определений

(6)

а также выражения (4) и теоремы о свертке следует, что

(7)

где sinc(u) - фурье-образ rect(x) [2].

Взяв теперь фурье-образ функции (5) и вспомнив первое из двух определений (6), увидим, что

(8)

где - радиальная координата в частотной плоскости и

(9)

причем J1 - функция Бесселя первого рода первого порядка.

Отметим, что sinc(t) - осциллирующая функция, имеющая центральный пик (часто называемый основным лепестком ) приблизительно единичной ширины и бесконечную последовательность меньших пиков (иногда называемых боковыми лепестками), каждый из которых имеет эффективную ширину, равную 1/2, и амплитуду, которая уменьшается сравнительно медленно (по закону ). Эти боковые лепестки могут привести к неприемлемым артефактам, если изображение подвергается операции фильтрации без соответствующей предварительной обработки. Хотя это относится в первую очередь к изображению , определенному выражением (4), то же самое справедливо и для изображения, заданного выражением (5). Функция jinc , введенная в формуле (8), аналогична функции sinc . Она фактически эквивалентна двум функциям sinc , входящим в формулу (7). Отметим, что типичная фильтрация может быть описана соотношением

(10)

где - мультипликативный фильтр, предназначенный для получения из изображения изображения , имеющего некоторые желательные характеристики. Боковые лепестки функции jinc и двух функций sinc искажают внешнее преобразование Фурье в формуле (10), часто приводя к очень неприятным пульсациям большой амплитуды в той области плоскости изображения, где велики значения , маскирующие низкоамплитудные детали в фильтрованном изображении.

Поскольку функция тождественно равна нулю вне кадра Г , обычно не удается достичь (в восстановленном изображении) разрешения, лучшего, чем соответствующее ширине главных лепестков функций sinc в формуле (7) или функции jinc в формуле (8). В то же время часто оказывается возможным уменьшить влияние боковых лепестков функций sinc и jinc путем соответствующей предварительной обработки.

Если мы знаем, что более интересные для нас части изображения f(x) лежат ближе к центру кадра Г , то в тех случаях, когда размер последнего существенно больше размера кадра , предварительная обработка может состоять в аподизации. Она заключается в умножении функции на функцию окна m=m(x) , которая плавно уменьшается до нуля на внешней границе кадра Г и равна нулю везде вне кадра Г . Вследствие этого область оказывается равной кадру Г . Обращаясь теперь к формуле (3), можно получить, что предварительно обработанное записанное изображение принимает вид

(11)

где - сглаженное изображение, полученное из фактически записанного изображения.

Аподизация неизбежно приводит к потере разрешения, но обычно это "окупается" устранением указанных выше артефактов. В стандартных пособиях приводятся многие функции окна, обеспечивающие удовлетворительный компромисс между уменьшением боковых лепестков и потерей разрешения. Поэтому нам представляется что достаточно продемонстрировать некоторые общие свойства функций окна на примере особенно "гибкой" функции окна, которой не уделялось достаточного внимания в соответствующей литературе.

Поскольку здесь рассматриваются только изображения , описываемые выражениями (4) и (5), по-видимому, не имеет особого смысла изучать функции окна, которые не обладают свойством круговой симметрии или не разделяются на сомножители, зависящие от переменных x и y по отдельности. Поэтому достаточно исследовать одномерные функции окна, например m(x) (через x обозначены переменные x , y или r ). В качестве величины L , удобно взять размер (усеченного) фактически записанного изображения в x-направлении. Приняв обозначение M(u)=M=F(m) и предположив, что m - функция, аналитическая на интервале <L/2 (т. е. "непрерывно гладкая", иначе говоря, бесконечно дифференцируемая), мы видим, что интеграл Фурье, определяющий величину M , можно взять по частям и получить следующее выражение:

(12)

где введено обозначение

(13)

Если взять интеграл (12), то появляется возможность анализировать боковые лепестки функции M(u) . Чтобы боковые лепестки быстрее уменьшались с возрастанием величины , необходимо обеспечить выполнение условия

(14)

где - положительное целое число.

Однако, как уже отмечалось выше, следует учитывать зависимость между уровнем боковых лепестков и потерями разрешения.

Литература.

1. Бейтс Р., Мак-Доннелл М. Восстановление и реконструкция изображений: Пер. с англ.- М.: Мир, 1989. - 336.
2. Bracewell R.N. The Fourier Transform and its Applications. - N.Y.: McGraw-Hill, 1978.

 В оглавление книги \ К следующему разделу \ К предыдущему разделу


Поиск по сайту:

Система Orphus

Яндекс.Метрика