MATLAB.Exponenta
MATLAB и Simulink на русском
Технологии разработки и отладки
		сложных технических систем

Обработка сигналов и изображений\ Image Processing Toolbox

И.М.Журавель "Краткий курс теории обработки изображений"

В оглавление книги\ К следующему разделу \ К предыдущему разделу

Формирование и обработка цифровых изображений

Изображение служит для представления информации в визуальном виде. Эффективность восприятия этой информации человеком зависит от многих факторов. Максимальный учет влияния этих факторов возможен при условии изучения целого ряда вопросов, связанных со способами получения, свойствами зрительного восприятия и обработкой изображений.

Методы получения цифровых изображений

На современном этапе развитие технической и медицинской диагностики неразрывно связано с визуализацией внутренних структур объекта [1]. Существует много различных видов визуализации. Возникают новые методы, но они не заменяют уже существующие, а лишь дополняют их. Разные методы визуализации основываются на разнообразных физических взаимодействиях электромагнитного излучения с материалами, средами, биотканями и, как следствие, обеспечивают измерение разных физических свойств этих объектов. Рассмотрим несколько основных методов получения изображений, которые представляют интерес для технической и медицинской диагностики.

Системы получения рентгенографических изображений

Рентгеновское излучение активно используется для получения изображений с момента его открытия в 1895 г. Изображение формируется в результате взаимодействия квантов рентгеновского излучения с приемником и представляет собой распределение квантов, которые прошли через объект диагностики и были зарегистрированы детектором (рис. 1). Последние делятся на первичные, т.е. те, которые прошли через объект

s6.gif (3816 bytes)

Рис. 1. Компоненты системы для получения рентгеновских изображений. B и E - кванты, которые прошли через исследуемый объект без взаимодействия; C и D - рассеянные кванты. Квант D отсеивается сеткой, которая препятствует рассеянному излучению, а квант A - поглощается в объекте.

без взаимодействия с его материалом, и на вторичные кванты, которые получаются в результате взаимодействия с материалом объекта. Вторичные кванты, как правило, отклоняются от направления своего начального движения и несут мало полезной информации. Полезную информацию несут первичные кванты. Они дают информацию о том, что квант проходит через материал объекта без взаимодействия.

Установлено, что контраст рентгенографического изображения резко уменьшается с увеличением энергии квантов, поэтому для получения большого контраста необходимо использовать излучение низкой энергии. Но это означает высокую дозу облучения, и потому должен быть найден некоторый компромисс между достаточным контрастом и наименьшей дозой облучения.

Даже если система получения изображений имеет высокую контрастность и хорошую дискретность, в случае высокого уровня шумов, перед рентгенологами возникают серьезные проблемы, связанные с идентификацией больших структур. Уровень шумов можно понизить за счет увеличения числа квантов, которые формируют изображение. Но при этом возрастает также доза облучения, поэтому необходимо принимать во внимание соотношения между двумя этими величинами.

Стандартные аналоговые системы осуществляют формирование и отображение информации аналоговым путем. Тем не менее, аналоговые системы имеют очень жесткие ограничения на экспозицию через маленький динамический диапазон, а также довольно скромные возможности по обработке изображений. В отличие от аналоговых, цифровые рентгенографические системы разрешают получать изображение при любой необходимой дозе и дают широкие возможности относительно их обработки.

Блок-схема типичной цифровой рентгенографической системы представлена на рис. 2.

s7.gif (4391 bytes)

Рис. 2. Элементы цифровой системы получения рентгеновских изображений.

Рентгеновский аппарат и приемник изображения связаны с компьютером, а полученное изображение запоминается и отображается (в цифровой форме) на телеэкране.

В цифровой рентгенографии используют такие приемники изображения как усилитель изображения, ионографическая камера и устройство с вынужденной люминесценцией. Эти приемники могут непосредственно формировать цифровые изображения без промежуточной регистрации. Усилители изображения не имеют наилучшей пространственной разрешающей способности или контраста, но имеют высокое быстродействие. Аналогово-цифровое преобразование флюорограммы с числом точек на изображении может занимать время меньшее, чем с. Даже при числе точек на изображении время его превращения в цифровую форму составляет всего несколько секунд. Время считывания из пластины с люминесценцией или с ионографической камеры значительно больше, хотя здесь лучшая разрешающая способность и динамический диапазон.

Записанное на фотопленке изображение можно перевести в цифровую форму с помощью сканирующего микроденситометра, но любая информация, зафиксированная на фотопленке с очень маленькой или очень высокой оптической плотностью, будет обезображена влиянием характеристик пленки. В цифровую форму можно превратить и ксерорентгенограмму также с помощью сканирующего денситометра, который работает в отраженном свете, но недостатком полученного изображения является наличие уже усиленных контуров.

К преимуществам цифровых рентгенографических систем относятся следующие факторы: цифровое отображение информации; низкая доза облучения; цифровая обработка изображений и улучшения качества. Рассмотрим эти преимущества более подробно [1-3].

Первое преимущество связано с отображением цифровой информации. Разложение изображения на уровни яркости на телеэкране или по плотности на фотопленке в цифровом виде становится в полной мере доступным для пользователя. Например, любую фотопленку, зарегистрированную с помощью цифровой обработки изображения, можно правильно экспонировать и получить характеристику, которая согласуется с соответствующими действительности значениями интенсивностей элементов изображения. И наоборот, весь диапазон оптических плотностей или яркостей может быть использован для отображения лишь одного участка диапазона яркостей изображения, которое приводит к повышению контраста в потенциально информативной области. В распоряжении оператора имеются алгоритмы для аналоговой обработки изображений с целью оптимального использования возможностей систем отображения. Метод гистограммной коррекции разрешает так обработать цифровое изображение на дисплее, что любому уровню яркости (или оптической плотности) в аналоговом изображении будут отвечать одинаковые числа ячеек яркости в цифровом отображении.

Второе преимущество цифровой рентгенологии - возможность снижения дозы облучения. Если в обычной рентгенологии доза облучения зависит от чувствительности приемника и динамического диапазона пленки, то в цифровой рентгенологии эти показатели могут оказаться несущественными.

Третье преимущество цифровой рентгенологии - это возможность цифровой обработки изображений. Рентгенолог должен обнаружить аномальные образования на осложненной фоном нормальной структуре объекта. Он может не заметить мелких деталей или пропустить слабоконтрастную структуру на фоне шумов изображения. Поэтому очень важной является возможность повышения визуального качества потенциально информативных участков для увеличения вероятности принятия правильных решений.

Получение изображений с помощью радиоизотопов

Метод, который рассматривается ниже, получил очень широкое применение в медицине. В последние десятилетия значительно развилась клиническая диагностика заболеваний человека с помощью введения в его организм радиоизотопов в индикаторном количестве. Визуализация с помощью радиоизотопов включает в себя ряд методов получения изображений, которые отражают распределение в организме меченных радионуклидами веществ. Эти вещества называются радиофармпрепаратами и предназначены для наблюдения и оценки физиологических функций отдельных внутренних органов. Характер распределения радиофармпрепаратов в организме определяется способами его введения, а также такими факторами, как величина кровотока объема циркулирующей крови и наличием того ли другого метаболического процесса.

Радиоизотопные изображения позволяют получать ценную диагностическую информацию. Наиболее распространенным методом этого класса является статическая изотопная визуализация в плоскости, которая называется планарной сцинтиграфией. Планарные сцинтиграммы представляют собой двумерные распределения, а именно проекции трехмерного распределения активности изотопов, которые находятся в поле зрения детектора. Томографические исследования с применением системы многоракурсного сбора информации об объекте разрешают преодолеть большинство проблем, связанных с наложением информации при одноракурсном способе сбора данных. Прогресс компьютерных технологий привел к применению компьютеров при исследованиях с помощью радиоизотопов, где важную роль играет томографическая и динамическая информация. Использование компьютерной техники повышает качество изображения и дает возможность при радиоизотопной визуализации получать количественную информацию об исследуемых объектах.

Ультразвуковая диагностика

Ультразвуковые методы визуализации широко применяются при разных диапазонах частот - от подводной локации и биоэхолокации (частоты до 300 КГц) до акустической микроскопии (от 12 МГц до 1ГГц и выше). Промежуточное расположение по частотам занимают ультразвуковая диагностика и терапия, а также неразрушающий контроль в промышленности. Информация о структуре исследуемого объекта закодирована в лучах, которые прошли через него и в рассеянном излучении. Задача системы визуализации состоит в расшифровке этой информации. В отличие от рентгеновских лучей, ультразвуковые волны преломляются и отбиваются на границах раздела сред с разными акустическими показателями преломления. Эти эффекты могут быть довольно заметными, что разрешает создать фокусирующие системы.

С точки зрения выбора конкретного способа построения систем визуализации, в зависимости от вида излучения между ультразвуком и рентгеновским излучением есть существенные различия. Ультразвуковые волны распространяются довольно медленно, поэтому при характерных размерах исследуемого объекта легко измерять соответствующее время распространения, которое разрешает использовать эхо-импульсные методы для формирования акустических изображений. С другой стороны, скорость ультразвуковых волн достаточно большая для того, чтобы накапливать и реконструировать всю информацию о виде полного кадра изображения за время 80 мс. Другими словами, появляется возможность наблюдать движение объектов в динамике. Ультразвуковые приборы отличаются один от другого лишь деталями.

Использование эффекта ядерного магнитного резонанса (ЯМР) для получения изображений

Несмотря на то, что во многих больших исследовательских центрах ЯМР-визуализация является одним из важных диагностических средств, сам метод еще находится на относительно ранней стадии своего развития. Само явление ядерного магнитного резонанса было открыто в 1946 году независимо Блохом и Парселлом с Паундом. Этот метод с помощью небольших изменений резонансной частоты (через наличие околомолекулярной электронной тучи) позволяет идентифицировать ядра в разном химическом окружении. Сначала ЯМР-методы с высокой разрешающей способностью разрабатывались как универсальное средство изучения химического состава и структуры твердого тела и жидкостей, а далее нашли свое применение и в других областях, в частности, медицине. Рядом с развитием ЯМР-спектроскопии развивались и методы визуализации - это и точечные методы, методы "быстрой" визуализации и прочие. Роль центрального процессора в современных ЯМР-системах выполняет мощный миникомпьютер, который обеспечивает канал связи с оператором и контроль функций узлов системы. Компьютер также обеспечивает запоминание и архивирование информации, отображение результатов исследований и во многих случаях соединяется с устройством быстрой обработки типа матричного процессора.

Пример обработки рентгеновских биомедицинских изображений с использованием системы MATLAB

Довольно часто рентгеновские биомедицинские изображения не отвечают тем критериям качества, которые необходимы для их достоверного анализа. Также не всегда существует возможность сделать повторный снимок. Это приводит к необходимости цифровой обработки такой информации [2, 3].

Основными недостатками рентгеновских изображений, в большинстве случаев, являются искаженные яркостные характеристики и низкая контрастность. Рассмотрим пример обработки одного из таких изображений с помощью системы MATLAB.

Недостаток исходного биомедицинского изображения (рис. 3а) состоит в том, что это изображение низкоконтрастное, что затрудняет анализ мелких деталей. Поэтому сначала выполняется операция растяжения гистограммы изображения на максимально допустимый диапазон (рис. 3б). Далее осуществляется контрастирование исследуемого изображения (рис. 3в). Это приводит к улучшению визуального качества рентгеновских изображений. На практике, конечно, применяются также и другие более сложные методы и алгоритмы обработки изображений такого рода.

%Пример программы обработки биомедицинских изображений в среде MATLAB
L=imread('cardial.bmp');
figure, imshow(L);
L1=imadjust(L,[min(min(L)) max(max(L))]/255,[],1);
figure, imshow(L1);
L=L1(:,:,1);
L=double(L);
Filter=[1 1 1,1 1 1,1 1 1];
Lser=filter2(Filter,L(:,:,1),'same')./9;
C=abs(L(:,:,1)-Lser)./(L(:,:,1)+Lser);
C=C.^.55;
[N M]=size(L);
for i=1:N;
disp(i);
for j=1:M;
if L(i,j,1)>Lser(i,j);
Lvyh(i,j)=Lser(i,j)*(1+C(i,j))/(1-C(i,j));
else
Lvyh(i,j)=Lser(i,j)*(1-C(i,j))/(1+C(i,j));
end;
end;
end;
figure, imshow(Lvyh/255);


а)


б)


в)

Рис. 3.

Литература

  1. Физика визуализации изображений в медицине: в 2–х томах. Т. 2: Пер. С англ. / Под ред. С. Уэбба. – М.: Мир, 1991. – 408 с., ил.
  2. Беликова Т.П. Моделирование линейных фильтров для обработки рентгеновских изображений в задачах медицинской диагностики // Цифровая оптика. Обработка изображений и полей в экспериментальных исследованиях / Под ред. В.И.Сифорова и Л.П.Ярославского. – М.: Наука, 1990. – 176 с.
  3. Н.Н. Блинов, Е.М. Жуков, Э.Б. Козловский, А.И. Мазуров. Телевизионные методы обработки рентгеновских и гамма–изображений. М.: Энергоатоиздат, 1982. – 200 с.

В оглавление книги \ К следующему разделу \ К предыдущему разделу


Поиск по сайту:

Система Orphus

Яндекс.Метрика