MATLAB è Simulink íà ðóññêîì

https://hub.exponenta.ru/

Обработка сигналов и изображений\ Image Processing Toolbox

И.М.Журавель "Краткий курс теории обработки изображений"

В оглавление книги \ К следующему разделу \ К предыдущему разделу

Типы изображений

Интегрированные среды для моделирования и исполнения программ цифровой обработки изображений и сигналов содержат мощные средства для инженерно–научных расчетов и визуализации данных. Большинство современных пакетов поддерживает визуальное программирование на основе блок–схем. Это позволяет создавать программы специалистам, не владеющим техникой программирования. К таким пакетам относится Image Processing Toolbox системы MATLAB, разработанный фирмой MathWorks. Этот пакет владеет мощными средствами для обработки изображений. Они имеют открытую архитектуру и позволяют организовывать взаимодействие с аппаратурой цифровой обработки сигналов, а также подключать стандартные драйвера.

Система MATLAB и пакет прикладных програм Image Processing Toolbox (IPT) является хорошим инструментом разработки, исследования и моделирования методов и алгоритмов обработки изображений. При решении задач обработки изображений пакет IPT позволяет идти двумя путями. Первый из них состоит в самостоятельной программной реализации методов и алгоритмов. Другой путь позволяет моделировать решение задачи с помощью готовых функций, которые реализуют наиболее известные методы и алгоритмы обработки изображений. И тот, и другой способ оправдан. Но все же для исследователей и разработчиков методов и алгоритмов обработки изображений предпочтительным является второй путь.

Это объясняется гибкостью таких программ, возможностью изменения всех параметров, что очень актуально при исследовании, разработке, определении параметром регуляризации и т.д. Прежде чем использовать для решения каких-либо задач обработки изображений стандартные функции пакета IPT, разработчик должен в совершенстве их исследовать. Для этого он должен точно знать, какой метод и с какими параметрами реализует та или иная функция.

В том и другом подходе к решению задачи обработки видеоданных объектом исследования является изображение. Для этого рассмотрим коротко особенности представления изображений в IPT.

Изображения бывают векторными и растровыми. Векторным называется изображение, описанное в виде набора графических примитивов. Растровые же изображения представляют собой двумерный массив, элементы которого (пикселы) содержат информацию о цвете. В цифровой обработке используются растровые изображения. Они в свою очередь делятся на типы - бинарные, полутоновые, палитровые, полноцветные.

Элементы бинарного изображения могут принимать только два значения - 0 или 1. Природа происхождения таких изображений может быть самой разнообразной. Но в большинстве случаев, они получаются в результате обработки полутоновых, палитровых или полноцветных изображений методами бинаризации с фиксированным или адаптивным порогом. Бинарные изображения имеют то преимущество, что они очень удобны при передаче данных.

Полутоновое изображение состоит из элементов, которые могут принимать одно из значений интенсивности какого-либо одного цвета. Это один из наиболее распространенных типов изображений, который применяется при различного рода исследованиях. В большинстве случаев используется глубина цвета 8 бит на элемент изображения.

В палитровых изображениях значение пикселов является ссылкой на ячейку карты цветов (палитру). Палитра представляет собой двумерный массив, в столбцах которого расположены интенсивности цветовых составляющих одного цвета.

В отличии от палитровых, элементы полноцветных изображений непосредственно хранят информацию о яркостях цветовых составляющих.

Выбор типа изображения зависит от решаемой задачи, от того, насколько полно и без потерь нужная информация может быть представлена с заданной глубиной цвета. Также следует учесть, что использование полноцветных изображений требует больших вычислительных затрат.

В зависимости от типа изображения они по-разному представляются в разных форматах. Этот момент будет очень важным при создании программ в среде IPT. Наиболее удобно зависимость способов представления элементов изображения (диапазон их значений) от типа и формата представить в виде таблицы.

Тип изображения double uint8
Бинарное 0 и 1 0 и 1
Полутоновое [0, 1] [0, 255]
Палитровое [1, размер палитры],

где 1 - первая строка палитры

[0, 255],

где 0 - первая строка палитры.*

Полноцветное [0, 1] [0, 255]

*Примечание. При программной реализации лучше избегать использования такой индексации строк. MATLAB корректно воспринимает индексацию с первой, а не нулевой строки.

В дальнейшем, при рассмотрении методов обработки изображений, будем считать, что изображение представляется матрицей чисел (размер матрицы), где значение каждого элемента отвечает определенному уровню квантования его энергетической характеристики (яркости). Это так называемая пиксельная система координат. Она применяется в большинстве функций пакета IPT. Существует также пространственная система координат, где изображение представляется непрерывным числовым полем квадратов с единичной величиной. Количество квадратов совпадает с числом пикселов. Значение интенсивности элемента в центре квадрата совпадает со значением соответствующего пиксела в пиксельной системе координат. При решении практических задач, связанных с измерениями реальных геометрических размеров объектов на изображении, удобно использовать пространственную систему координат, так как она позволяет учитывать разрешение (количество пикселов на метр) системы.

Маска фильтра (или скользящее окно, или апертура) представляет собой матрицу размера . Она накладывается на изображение и осуществляется умножением элементов маски фильтра и соответствующих элементов изображения с последующей обработкой результата. Когда маска передвигается к границе изображения, возникает так называемое явление краевого эффекта. Во избежание этого нежелательного эффекта необходимо, когда маска вышла за пределы исходного изображения, дополнить его не нулевыми элементами (как советует большинство книг по Matlab), а элементами изображения, симметричными относительно его краев.

Обработка изображений осуществляется рекурсивными и нерекурсивными методами. Рекурсивные методы используют результат обработки предыдущего пиксела, нерекурсивные - не используют. В большинстве случаев используются нерекурсивные алгоритмы обработки изображений.

В оглавление книги \ К следующему разделу \ К предыдущему разделу


Поиск по сайту:


Система Orphus