MATLAB.Exponenta
MATLAB и Simulink на русском
Технологии разработки и отладки
		сложных технических систем

Проектирование систем управления\Fuzzy Logic Toolbox

С.Д.Штовба "Введение в теорию нечетких множеств и нечеткую логику"

В оглавление книги \ К следующему разделу \ К предыдущему разделу

1.7. Нечеткая логика

1.7.5. Нечеткий логический вывод

1.7.5.7. ANFIS

ANFIS - это аббревиатура Adaptive-Network-Based Fuzzy Inference System - адаптивная сеть нечеткого вывода. Она была предложена Янгом (Jang) в начале девяностых [1]. ANFIS является одним из первых вариантов гибридных нейро-нечетких сетей - нейронной сети прямого распространения сигнала особого типа. Архитектура нейро-нечеткой сети изоморфна нечеткой базе знаний. В нейро-нечетких сетях используются дифференцируемые реализации треугольных норм (умножение и вероятностное ИЛИ), а также гладкие функции принадлежности. Это позволяет применять для настройки нейро-нечетких сетей быстрые алгоритмы обучения нейронных сетей, основанные на методе обратного распространения ошибки. Ниже описываются архитектура и правила функционирования каждого слоя ANFIS-сети. Материал базируется на книге [2].

ANFIS реализует систему нечеткого вывода Сугено в виде пятислойной нейронной сети прямого распространения сигнала. Назначение слоев следующее:

первый слой - термы входных переменных;
второй слой - антецеденты (посылки) нечетких правил;
третий слой - нормализация степеней выполнения правил;
четвертый слой - заключения правил;
пятый слой - агрегирование результата, полученного по различным правилам.

Входы сети в отдельный слой не выделяются. На рис. 1 изображена ANFIS-сеть с двумя входными переменными (x1 и x2) и четырьмя нечеткими правилами. Для лингвистической оценки входной переменной x1 используется 3 терма, для переменной x2 - 2 терма.

Введем следующие обозначения, необходимые для дальнейшего изложения:

 - входы сети;

y - выход сети;

 - нечеткое правило с порядковым номером r;

m - количество правил ,;

 - нечеткий терм с функцией принадлежности , применяемый для лингвистической оценки переменной в r-ом правиле (,);

 - действительные числа в заключении r-го правила (,).

ANFIS-сеть функционирует следующим образом.

Слой 1. Каждый узел первого слоя представляет один терм с колокообразной функцией принадлежности. Входы сети соединены только со своими термами. Количество узлов первого слоя равно сумме мощностей терм-множеств входных переменных. Выходом узла являются степень принадлежности значения входной переменной соответствующему нечеткому терму:

,

где a, b и c - настраиваемые параметры функции принадлежности.

Слой 2. Количество узлов второго слоя равно m. Каждый узел этого слоя соответствует одному нечеткому правилу. Узел второго слоя соединен с теми узлами первого слоя, которые формируют антецеденты соответствующего правила. Следовательно, каждый узел второго слоя может принимать от 1 до n входных сигналов. Выходом узла является степень выполнения правила, которая рассчитывается как произведение входных сигналов. Обозначим выходы узлов этого слоя через , .

Слой 3. Количество узлов третьего слоя также равно m. Каждый узел этого слоя рассчитывает относительную степень выполнения нечеткого правила:

.

Слой 4. Количество узлов четвертого слоя также равно m. Каждый узел соединен с одним узлом третьего слоя а также со всеми входами сети (на рис. 1 связи с входами не показаны). Узел четвертого слоя рассчитывает вклад одного нечеткого правила в выход сети:

.

Слой 5. Единственный узел этого слоя суммирует вклады всех правил:

.

Типовые процедуры обучения нейронных сетей могут быть применены для настройки ANFIS-сети так как, в ней использует только дифференцируемые функции. Обычно применяется комбинация градиентного спуска в виде алгоритма обратного распространения ошибки и метода наименьших квадратов. Алгоритм обратного распространения ошибки настраивает параметры антецедентов правил, т.е. функций принадлежности. Методом наименьших квадратов оцениваются коэффициенты заключений правил, так как они линейно связаны с выходом сети. Каждая итерация процедуры настройки выполняется в два этапа. На первом этапе на входы подается обучающая выборка, и по невязке между желаемым и действительным поведением сети итерационным методом наименьших квадратов находятся оптимальные параметры узлов четвертого слоя. На втором этапе остаточная невязка передается с выхода сети на входы, и методом обратного распространения ошибки модифицируются параметры узлов первого слоя. При этом найденные на первом этапе коэффициенты заключений правил не изменяются. Итерационная процедура настройки продолжается пока невязка превышает заранее установленное значение. Для настройки функций принадлежностей кроме метода обратного распространения ошибки могут использоваться и другие алгоритмы оптимизации, например, метод Левенберга-Марквардта.

Литература

  1. Jang J.-S. R. ANFIS: Adaptive-Network-Based Fuzzy Inference System // IEEE Trans. Systems & Cybernetics. - 1993. - Vol. 23. - P. 665 - 685.
  2. Nauck D., Klawonn F., Kruse R. Foundations of Neuro-Fuzzy Systems. John Wiley & Sons.- 1997.- 305p.

В оглавление книги \ К следующему разделу \ К предыдущему разделу


Поиск по сайту:

Система Orphus

Яндекс.Метрика