MATLAB.Exponenta
–Û·Ë͇ Matlab&Toolboxes

Проектирование систем управления\Fuzzy Logic Toolbox

С.Д.Штовба "Введение в теорию нечетких множеств и нечеткую логику"

В оглавление книги \ К следующему разделу \ К предыдущему разделу

1.1 Основные термины и определения

Понятие нечеткого множества - эта попытка математической формализации нечеткой информации для построения математических моделей. В основе этого понятия лежит представление о том, что составляющие данное множество элементы, обладающие общим свойством, могут обладать этим свойством в различной степени и, следовательно принадлежать к данному множеству с различной степенью. При таком подходе высказывания типа “такой-то элемент принадлежит данному множеству” теряют смысл, поскольку необходимо указать “насколько сильно” или с какой степенью конкретный элемент удовлетворяет свойствам данного множества.

Определение 1. Нечетким множеством (fuzzy set) на универсальном множестве U называется совокупность пар (), где  - степень принадлежности элемента к нечеткому множеству . Степень принадлежности - это число из диапазона [0, 1]. Чем выше степень принадлежности, тем в большей мерой элемент универсального множества соответствует свойствам нечеткого множества.

Определение 2. Функцией принадлежности (membership function) называется функция, которая позволяет вычислить степень принадлежности произвольного элемента универсального множества к нечеткому множеству.

Если универсальное множество состоит из конечного количества элементов , тогда нечеткое множество записывается в виде . В случае непрерывного множества U используют такое обозначение

Примечание: знаки и в этих формулах означают совокупность пар и u.

Пример 1. Представить в виде нечеткого множества понятие “мужчина среднего роста”.

Решение:  = 0/155+0.1/160 + 0.3/165 + 0.8/170 +1/175 +1/180 + 0.5/185 +0/180.

Определение 3. Лингвистической переменной (linguistic variable) называется переменная, значениями которой могут быть слова или словосочетания некоторого естественного или искусственного языка.

Определение 4. Терм–множеством (term set) называется множество всех возможных значений лингвистической переменной.

Определение 5. Термом (term) называется любой элемент терм–множества. В теории нечетких множеств терм формализуется нечетким множеством с помощью функции принадлежности.

Пример 2. Рассмотрим переменную “скорость автомобиля”, которая оценивается по шкале “низкая", "средняя", "высокая” и “очень высокая".

В этом примере лингвистической переменной является “скорость автомобиля”, термами - лингвистические оценки “низкая", "средняя", "высокая” и “очень высокая”, которые и составляют терм–множество.

Определение 6. Дефаззификацией (defuzzification) называется процедура преобразования нечеткого множества в четкое число.

В теории нечетких множеств процедура дефаззификации аналогична нахождения характеристик положения (математического ожидания, моды, медианы) случайных величин в теории вероятности. Простейшим способом выполнения процедуры дефаззификации является выбор четкого числа, соответствующего максимуму функции принадлежности. Однако пригодность этого способа ограничивается лишь одноэкстремальными функциями принадлежности. Для многоэкстремальных функций принадлежности в Fuzzy Logic Toolbox запрограммированы такие методы дефаззификации:

Centroid - центр тяжести;

Bisector - медиана;

LOM (Largest Of Maximums) - наибольший из максимумов;

SOM (Smallest Of Maximums) - наименьший из максимумов;

Mom (Mean Of Maximums) - центр максимумов.

Определение 7. Дефаззификация нечеткого множества по методу центра тяжести осуществляется по формуле .

Физическим аналогом этой формулы является нахождение центра тяжести плоской фигуры, ограниченной осями координат и графиком функции принадлежности нечеткого множества. В случае дискретного универсального множества дефаззификация нечеткого множества по методу центра тяжести осуществляется по формуле .

Определение 8. Дефаззификация нечеткого множества по методу медианы состоит в нахождении такого числа a, что .

Геометрической интерпретацией метода медианы является нахождения такой точки на оси абцисс, что перпендикуляр, восстановленный в этой точке, делит площадь под кривой функции принадлежности на две равные части. В случае дискретного универсального множества дефаззификация нечеткого множества по методу медианы осуществляется по формуле .

Определение 9. Дефаззификация нечеткого множества по методу центра максимумов осуществляется по формуле:

,

где G – множество всех элементов из интервала , имеющих максимальную степень принадлежности нечеткому множеству .

В методе центра максимумов находится среднее арифметическое элементов универсального множества, имеющих максимальные степени принадлежностей. Если множество таких элементов конечно, то формула из определения 9 упрощается к следующему виду:

,

где - мощность множества G.

В дискретном случае дефаззификация по методам наибольшего из максимумов и наименьшего из максимумов осуществляется по формулам и , соответственно. Из последних трех формулы видно, что если функция принадлежности имеет только один максимум, то его координата и является четким аналогом нечеткого множества.

Пример 3. Провести дефаззификацию нечеткого множества “мужчина среднего роста” из примера 1 по методу центра тяжести.

Решение: Применяя формулу из определения 7, получаем:

Определение 10. Нечеткой базой знаний (fuzzy knowledge base) о влиянии факторов на значение параметра y называется совокупность логических высказываний типа:

ЕСЛИ

ИЛИ

ИЛИ ,

ТО , для всех ,

где - нечеткий терм, которым оценивается переменная в строчке с номером jp ();

- количество строчек-конъюнкций, в которых выход y оценивается нечетким термом , ;

- количество термов, используемых для лингвистической оценки выходного параметра y.

С помощью операций (ИЛИ) и (И) нечеткую базу знаний из определения 10 перепишем в более компактном виде:

          (1)

Определение 11. Нечетким логическим выводом (fuzzy logic inference) называется апроксимация зависимости с помощью нечеткой базы знаний и операций над нечеткими множествами.

Пусть - функция принадлежности входа нечеткому терму , , , , т. е. ; - функция принадлежности выхода y нечеткому терму , , т. е. . Тогда степень принадлежности конкретного входного вектора нечетким термам из базы знаний (1) определяется следующей системой нечетких логических уравнений:

,       (2)

где  - операция максимума (минимума).

Нечеткое множество , соответствующее входному вектору , определяется следующим образом:

,              (3)

где - операция объединения нечетких множеств.

Четкое значение выхода y, соответствующее входному вектору определяется в результате деффаззификации нечеткого .

1.2. Свойства нечетких множеств

Определение 12. Высотой нечеткого множества называется верхняя граница его функции принадлежности: . Для дискретного универсального множества супремум становится максимумом, а значит высотой нечеткого множества будет максимум степеней принадлежности его элементов

Определение 13. Нечеткое множество называется нормальным, если его высота равна единице. Нечеткие множества не являющиеся нормальными называются субнормальными. Нормализация ‑ преобразование субнормального нечеткого множества в нормальное определяется так: . В качестве примера на рис. 1 показана нормализация нечеткого множества с функцией принадлежности .

Рисунок 1 - Нормализация нечеткого множества

Определение 14. Носителем нечеткого множества называется четкое подмножество универсального множества , элементы которого имеют ненулевые степени принадлежности: .

Определение 15. Нечеткое множество называется пустым, если его носитель является пустым множеством.

Определение 16. Ядром нечеткого множества называется четкое подмножество универсального множества , элементы которого имеют степени принадлежности равные единице: . Ядро субнормального нечеткого множества пустое.

Определение 17. -сечением (или множеством -уровня) нечеткого множества называется четкое подмножество универсального множества , элементы которого имеют степени принадлежности большие или равные : , . Значение называют -уровнем. Носитель (ядро) можно рассматривать как сечение нечеткого множества на нулевом (единичном) -уровне.

Рис. 2 иллюстрирует определения носителя, ядра, -сечения и -уровня нечеткого множества.

Рисунок 2 - Ядро, носитель и -сечение нечеткого множества

Определение 18. Нечеткое множество называется выпуклым если: , , . Альтернативное определение: нечеткое множество будет выпуклым, если все его -сечения - выпуклые множества. На рис. 3 приведены примеры выпуклого и невыпуклого нечетких множеств.

Рисунок 3 - К определению выпуклого нечеткого множества

Определение 19. Нечеткие множества и равны () если .

1.3. Операции над нечеткими множеств

Определения нечетких теоретико-множественных операций объединения, пересечения и дополнения могут быть обобщены из обычной теории множеств. В отличие от обычных множеств, в теории нечетких множеств степень принадлежности не ограничена лишь бинарной значениями 0 и 1 ‑ она может принимать значения из интервала [0, 1]. Поэтому, нечеткие теоретико-множественные операции могут быть определены по-разному. Ясно, что выполнение нечетких операций объединения, пересечения и дополнения над не нечеткими множествами должно дать такие же результаты, как и при использование обычных канторовских теоретико-множественных операций. Ниже приведены определения нечетких теоретико-множественных операций, предложенных Л. Заде.

Определение 20. Дополнением нечеткого множества заданного на называется нечеткое множество с функцией принадлежности для всех . На рис. 4 приведен пример выполнения операции нечеткого дополнения.

Рисунок 4 - Дополнение нечеткого множества

Определение 21. Пересечением нечетких множеств и заданных на называется нечеткое множество с функцией принадлежности для всех . Операция нахождения минимума также обозначается знаком , т.е. .

Определение 22. Объединением нечетких множеств и заданных на называется нечеткое множество с функцией принадлежности для всех . Операция нахождения максимума также обозначается знаком , т.е. .

Обобщенные определения операций нечеткого пересечения и объединения - треугольной нормы (t-нормы) и треугольной конормы (t-конормы или s-нормы) приведены ниже.

Определение 23. Треугольной нормой (t-нормой) называется бинарная операция на единичном интервале , удовлетворяющая следующим аксиомам для любых :

  1. (граничное условие);
  2. если (монотонность);
  3. (коммутативность);
  4. (ассоциативность).

Наиболее часто используются такие t-нормы: пересечение по Заде ‑ ; вероятностное пересечение ‑ ; пересечение по Лукасевичу ‑ . Примеры выполнения пересечения нечетких множеств с использованием этих t-норм показаны на рис. 5.

Рисунок 5 - Пересечение нечетких множеств с использованием различных t-норм

Определение 25. Треугольной конормой (s-нормой) называется бинарная операция на единичном интервале , удовлетворяющая следующим аксиомам для любых :

  1.  (граничное условие);
  2. если  (монотонность);
  3.  (коммутативность);
  4.  (ассоциативность).

Наиболее часто используются такие s-нормы: объединение по Заде ‑ ; вероятностное объединение ‑ ; объединение по Лукасевичу ‑ . Примеры выполнения объединения нечетких множеств с использованием этих s-норм показаны на рис. 6.

Наиболее известные треугольные нормы приведены в табл. 1.

Рисунок 6 - Объединение нечетких множеств с использованием различных s-норм

Таблица 1 - Примеры треугольных норм

Параметр

1.4. Нечеткая арифметика

В этом разделе рассматриваются способы расчета значений четких алгебраических функций от нечетких аргументов. Материал основывается на понятиях нечеткого числа и принципа нечеткого обобщения. В конце раздела приводятся правила выполнения арифметических операций над нечеткими числами.

Определение 25. Нечетким числом называется выпуклое нормальное нечеткое множество с кусочно-непрерывной функцией принадлежности, заданное на множестве действительных чисел. Например, нечеткое число "около 10" можно задать следующей функцией принадлежности: .

Определение 26. Нечеткое число называется положительным (отрицательным) если , ().

Определение 27. Принцип обобщения Заде. Если  ‑ функция от n независимых переменных и аргументы заданы нечеткими числами , соответственно, то значением функции называется нечеткое число с функцией принадлежности:

.

Принцип обобщения позволяет найти функцию принадлежности нечеткого числа, соответствующего значения четкой функции от нечетких аргументов. Компьютерно-ориентированная реализация принципа нечеткого обобщения осуществляется по следующему алгоритму:

Шаг 1.  Зафиксировать значение .

Шаг 2.  Найти все n-ки , , удовлетворяющие условиям и , .

Шаг 3.  Степень принадлежности элемента нечеткому числу вычислить по формуле: .

Шаг 4.  Проверить условие "Взяты все элементы y?". Если "да", то перейти к шагу 5. Иначе зафиксировать новое значение и перейти к шагу 2.

Шаг 5.  Конец.

Приведенный алгоритм основан на представлении нечеткого числа на дискретном универсальном множестве, т.е. . Обычно исходные данные , задаются кусочно-непрерывными функциями принадлежности: . Для вычисления значений функции аргументы , дискретизируют, т.е. представляют в виде . Число точек выбирают так, чтобы обеспечить требуемую точность вычислений. На выходе этого алгоритма получается нечеткое множество, также заданное на дискретном универсальном множестве. Результирующую кусочно-непрерывную функцию принадлежности нечеткого числа получают как верхнюю огибающую точек .

Пример 4. Нечеткие числа и заданы следующими трапециевидными функциями принадлежности:

и .

Необходимо найти нечеткое число с использованием принципа обобщения из определения 27.

Зададим нечеткие аргументы на четырех точках (дискретах): {1, 2, 3 4} для и {2, 3, 4 8} для . Тогда: и . Процесс выполнения умножения над нечеткими числами сведен в табл. 2. Каждый столбец таблицы соответствует одной итерации алгоритма нечеткого обобщения. Результирующее нечеткое множество задано первой и последней строчками таблицы. В первой строке записаны элементы универсального множества, а в последней строке - степени их принадлежности к значению выражения . В результате получаем: . Предположим, что тип функция принадлежности будет таким же, как и аргументов и , т. е. трапециевидной. В этом случае функция принадлежности задается выражением: . На рис. 7 показаны результаты выполнения операции с представлением нечетких множителей на 4-х дискретах. Красными звездочками показаны элементы нечеткого множества из табл. 2, а тонкой красной линией - трапециевидная функция принадлежности.

Исследуем, как измениться результат нечеткого обобщения при увеличении числа дискрет, на которых задаются аргументы. Нечеткое число при задании аргументов и на 30 дискретах приведено на рис. 7. Синими точками показаны элементы нечеткого множества , найденные по принципу обобщения, а зеленой линией - верхняя огибающая этих точек ‑ функция принадлежности . Функция принадлежности результата имеет форму криволинейной трапеции, немного выгнутой влево.

Таблица 2 - К примеру 4

2

3

4

6

8

9

12

16

24

32

1

1

1

2

2

3

1

2

4

3

3

4

2

4

3

4

2

3

4

2

3

2

8

4

2

3

4

3

8

4

8

8

0

0

0

1

1

1

0

1

0

1

1

0

1

0

1

0

0

1

1

0

1

0

0

1

0

1

1

1

0

1

0

0

0

0

1

0

1

0

0

1

0

1

1

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

 

Рисунок 7 - К примеру 4

Применение принципа обобщения Заде сопряжено с двумя трудностями:

  1. большой объем вычислений - количество элементов результирующего нечеткого множества, которые необходио обработать, равно , где  ‑ количество точек, на которых задан i-й нечеткий аргумент, ;
  2. необходимость построения верхней огибающей элементов результирующего нечеткого множества.

Более практичным является применение -уровневого принципа обобщения. В этом случае нечеткие числа представляются в виде разложений по -уровневым множествам: , где  ‑ минимальное (максимальное) значение на -уровне.

Определение 28. -уровневый принцип обобщения. Если  ‑ функция от n независимых переменных и аргументы заданы нечеткими числами , , то значением функции называется нечеткое число , где и .

Применение -уровневого принципа обобщения сводится к решению для каждого -уровня следующей задачи оптимизации: найти максимальное и минимальное значения функции при условии, что аргументы могут принимать значения из соответствующих -уровневых множеств. Количество -уровней выбирают так, чтобы обеспечить необходимую точность вычислений.

Пример 5. Решить задачу из примера 4 применяя -уровневый принцип обобщения.

Будем использовать 2 следующих -уровня:{0, 1}. Тогда нечеткие аргументы задаються так: и . По -уровневому принципу обобщения получаем: . На рис. 8 показан результат умножения двух нечетких чисел : красными горизонтальными линиями изображены -сечения, а тонкой красной линией - кусочно-линейная аппроксимация функции принадлежности нечеткого числа .

Исследуем, как измениться результат нечеткого обобщения при увеличении числа -уровней. Нечеткое число при задании аргументов и на 41 -уровне показано на рис. 8. Синими горизонтальными линиями изображены -сечения нечеткого множества, а жирной синей линией -кусочно-линейная аппроксимация функции принадлежности нечеткого числа для 41 -уровня. Сравнивая рис. 7 и 8, видим, что результаты обобщения по определениям 27 и 28 близки.

Рисунок 8 - К примеру 5

Применение -уровневого принципа обобщения позволяет получить правила выполнения арифметических операций над нечеткими числами. Правила выполнения арифметических операций для положительных нечетких чисел приведены в табл. 3. Эти правила необходимо применять для каждого -уровня.

Таблица 3 -Правила выполнения арифметических операций для положительных нечетких чисел (для каждого -уровня)

Арифметическая операция

В оглавление книги \ К следующему разделу \ К предыдущему разделу


Поиск по сайту:

Система Orphus

Яндекс.Метрика